
Developing a Pre- and Post-Course Concept Inventory to
Gauge Operating Systems Learning

Kevin C. Webb
Computer Science Department

Swarthmore College
Swarthmore, PA

kwebb@cs.swarthmore.edu

Cynthia Taylor
Computer Science Department

Oberlin College
Oberlin, OH

ctaylor@oberlin.edu

ABSTRACT
Operating systems courses often present students with multiple ap-
proaches to solve a problem, often with differing trade-offs. While
students are more than capable of memorizing the details of these
competing approaches, they often struggle to recommend a spe-
cific approach and analyze its implications. In particular, we find
that students exhibit difficultly in interpreting text-based scenario
descriptions in a way that allows them to correctly choose between
potential solutions when presented with a high-level, conceptual
scenario.

In this paper, we describe the development of a pre- and post-
course concept inventory, which we utilize to explore students’ mis-
conceptions of operating systems and their associated trade-offs.
We compare the results of our assessment with in-class peer in-
struction questions and exam questions to characterize the areas
in which students most commonly struggle with operating systems
material.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]: Com-
puter Science Education

General Terms
Human Factors

Keywords
Concept Inventory, Misconceptions, Operating Systems

1. INTRODUCTION AND BACKGROUND
Students begin courses with intuition and prior knowledge about

how to solve tasks. These preconceptions can be leveraged to guide
them to a deeper understanding of computer science concepts [5],
or it may lead to misconceptions, which if not corrected by the in-
structor, may persist and hinder their understanding of a subject. In
computer science, previous work has shown that students have trou-
ble with even the most basic concepts of programming [4, 18, 22].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE’14, March 5–8, 2014, Atlanta, GA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2605-6/14/03 ...$15.00.
http://dx.doi.org/10.1145/2538862.2538886 .

In this work, we present the results of a preliminary pre- and post-
course inventory of operating systems concepts, designed to exam-
ine both students’ preconceptions about the material and the mis-
conceptions they hold after completing an upper-division operating
systems course.

Most collegiate courses combine a variety of assessments to
gauge student learning, with student evaluation primarily centered
around midterm and final exams. Such exams often ask stu-
dents to perform calculations or provide explanations (that may
be memorized) in addition to examining student understanding of
the course’s key high-level conceptual “take-aways.” This assess-
ment diversity has led to the development of concept inventories,
which exclusively aim to reveal student understanding of critical
high-level concepts.

In physics, the Force Concept Inventory (FCI) [15] revealed a
dramatic difference between how students and instructors think
about mechanics concepts. It demonstrated that final exams were
not sufficient for revealing the persistence of students’ basic mis-
conceptions, even after they had completed introductory physics
coursework. Subsequent work using the FCI to compare new, in-
teractive pedagogical approaches to traditional lecture techniques
has transformed the way introductory physics classes are taught,
yielding significant student learning gains [11].

Concept inventories are now widely used in a variety of disci-
plines [9] to assess the impact of pedagogical methods. In the field
of computer science, concept inventories have been created for dig-
ital logic [12, 13], algorithms and data structures [8], introductory
courses [10, 17], and discrete math [2]. However, most pedagog-
ical literature on the subject of operating systems has focused on
designing student projects [3, 6, 14]. While some work has been
done identifying overall principles of computer systems [16], there
has not yet been any work towards characterizing student miscon-
ceptions of operating systems principles.

In this work, we discuss our experiences in developing a concept
inventory for operating systems courses. This effort is part of a
broader initiative to apply the principles of open source software to
the development of concept inventories. We believe that by apply-
ing rapid, multi-author development models to the construction of
computer science concept inventories, the educational community
will benefit from high-quality, dynamic concept assessments that
will lead to a significant increase in course coverage. Our assess-
ment is publicly available online [1], and we welcome collaboration
from interested parties.

We compare student results on our assessment, given as pre- and
post-course multiple choice quizzes, to the results of similar ques-
tions from both in-class peer instruction questions and traditional
exam questions. Our analysis of data collected from four oper-
ating systems courses provides insights into student understand-

Table 1: A brief summary of the courses in which our assessment
has been deployed.

Course Weeks Students Methodology Instructor

A 5 21 Peer Instruction I1
B 10 133 Lecture I2
C 10 133 Lecture I2
D 14 9 Peer Instruction I3

ing of the material. In this paper, we specifically examine the
lowest-performing assessment questions and discuss what they re-
veal about student comprehension of operating systems concepts.

2. METHODS
For our inventory, we created questions to be administered before

and after collegiate operating systems courses. This section char-
acterizes the courses in which the assessment was administered and
describes our question development goals.

2.1 Course Context
To date, our concept inventory has been administered in four

courses, at two institutions, by three instructors. We summarize
the course summaries in Table 1, referring to the courses as A
through D and instructors as I1, I2, and I3. Courses A through C
were taught at a public, research-intensive university in the western
United States. Approximately 23,000 undergraduate students at-
tend the university, with about 1,200 students majoring in computer
science. Course D was taught at a small, private liberal arts college
in the midwestern United States. Approximately 2,800 undergrad-
uate students attend this college, with about 60 students majoring
in computer science.

Courses A through C are required for majors in the computer
science department of the respective institution and are typically
taken by students in their junior or senior year. Prerequisites for
the course include computer organization, algorithms, and software
engineering. Course D is an elective, which was taken exclusively
by seniors. Its prerequisites include computer organization, algo-
rithms, and systems programming. Students are expected to be
comfortable with programming in C and working in a Unix-like
environment prior to enrolling in all courses.

Course A was a five week, intensive summer course, with 21
students enrolled at the time of the final exam. Courses B and C
were ten-week quarters, each with 133 students enrolled at the time
of the final exam. Course D was a fourteen-week semester long
course, with 9 students enrolled at the time of the final exam.

In courses A and D, students were given the pre-test as an in-
class assessment prior to the first lecture, and the post-test on the
final day of instruction. In courses B and C, the pre and post tests
were given as part of an optional discussion section. The pre-test
was given in the first discussion section, and the post-test was given
as part of a final review section.

Courses B and C were taught by an experienced instructor who
has taught the course many times. They were taught in a traditional
lecture format. Courses A and D were taught by relatively inex-
perienced instructors using peer instruction (PI) pedagogy [7]. PI
utilizes frequent student discussion to engage students and provide
a more interactive learning environment. Students were presented
with four to six multiple-choice PI questions per class period. Stu-
dents responded twice for each question, and we collected data at
both points. The first time, students responded individually to the
presented questions. Afterwards, they discussed the question in
small groups of three or four and then responded again, as a group.
Student response data was captured using hand-held “clickers,” and

Table 2: A brief summary of our assessment’s questions.

Question Concept

1 Timing of system calls and context switching
2 How kernel code is executed
3 Choosing a scheduling algorithm
4 The bounded buffer problem (discussed in 4.3)
5 Segments versus pages in memory management
6 Indirection in file pointers (discussed in 4.1)
7 Polling versus interrupts (discussed in 4.2)
8 Access Control Lists versus Capabilities
9 Multiprocess execution on a single CPU
10 Least recently used eviction (Courses B-D only)

we refer to individual and group response data in our results. Af-
ter the group response phase completed, the instructor guided the
class though a class-wide discussion. In this paper, we incorporate
the data collected through the peer instruction process to give us
more insight into how and why students performed as they did on
specific questions in the concept inventory.

2.2 Goals and Question Development
Operating systems courses typically focus on analyzing design

trade-offs and selecting the best solution for a specific set of cir-
cumstances. Rather than identifying a single right answer, students
in an operating systems course must often choose from among a
set of viable answers, each of which is ideal for a specific situation.
Unlike exam questions, which may involve students reciting mem-
orized pros and cons for different approaches, we aim for our as-
sessment’s questions to force students to examine the implications
of choosing between opposing trade-offs. Many of our questions
present a scenario and ask students to apply the course’s principles
in choosing the most appropriate option. We feel that this form of
question better allows us to assess their understanding of the sub-
ject’s core concepts.

At the same time, we intend for our inventory to be used as both
a pre- and post-test, and thus we would like our questions to be
reasonably accessible to students who do not have prior knowledge
of the subject. To this end, we minimized our use of specialized
vocabulary where possible and defined terms when we felt it might
improve the accessibility of a question. By doing this, we hope
to capture how students conceptualize important material prior to
any formal instruction. To reduce the effects of students randomly
guessing, we provide an option of “I am not familiar with this ter-
minology / I don’t know” as the final choice (E) for every question.

With these goals in mind, we developed questions based on our
past experiences teaching operating systems courses and working
with students who had difficulties with the material. We identi-
fied areas that students frequently have trouble understanding and
developed multiple choice questions with distractor answers based
on our experiences with common student misconceptions. We cre-
ated a ten-question, multiple choice inventory that poses high-level,
conceptual questions about key concepts in operating systems. Ta-
ble 2 outlines the topic of each question.

Our inventory is available online in its entirety [1], and we en-
courage collaborative development and refinement from additional
authors. Moving forward, we intend to rigorously validate our
assessment by consulting with other experts in teaching operat-
ing systems, interviewing students, and collecting additional data
by giving our assessment to more classes of students. Our goal
is to construct a validated and widely-adopted operating systems
concept inventory in collaboration with the operating systems aca-
demic community.

1 2 3 4 5 6 7 8 9 10
Question

0

20

40

60

80

100
Pe

rc
en

t C
or

re
ct

Course A, Pre-test
Course B, Pre-test
Course C, Pre-test
Course D, Pre-test

Course A, Post-test
Course B, Post-test
Course C, Post-test
Course D, Post-test

Figure 1: An overview of concept question scores, grouped by question number as identified in Table 2. Each group of bars depicts student
performance across the four courses (A–D) in which the inventory was deployed. We focus our analysis of selected results (Section 4) on
questions 4, 6, and 7, which showed relatively poor performance.

3. RESULTS OVERVIEW
All courses showed improvement across each question between

the pre- and post-test. In courses B, C, and D, students averaged 3.3
correct responses (median of four) on the pre-test, and 5.5 correct
responses (median of five) on the post-test. In course A, where stu-
dents were only given questions 1 through 9, students averaged 2.7
correct responses (median of three) on the pre-test and 5.0 correct
responses (median of six) on the post-test.

Figure 1 illustrates the pre-test scores and post-test improvement,
grouped by question and class. While variation is to be expected
between multiple courses taught by different instructors, there are
clear trends across classes, particularly for questions on which stu-
dents performed poorly. Students uniformly performed the worst
on question 4, a fairly straightforward question on the bounded
buffer problem. They uniformly did well, even in the pre-test, on
question 10, which uses an analogy about bookshelves to discuss
the least recently used eviction policy. They also all show a great
deal of post-course improvement on question 2, which covers how
kernel code is executed, and question 9, on the relative execution
rates of processes.

This uniformity in student answers across classes allows us to
generalize about the content students struggle with in operating sys-
tems courses. They generally have trouble with synchronization,
indirection, and I/O, all of which we discuss at length in Section 4.
High student performance on the pre-test for question 10 shows that
many students already have an intuitive understanding of the con-
cept of least recently used eviction, which can be leveraged when
teaching that concept.

Figure 2 depicts the cumulative percentage of responses, across
all four courses, that selected “I don’t know.” or chose the most
popular distractor. While every question showed improvement on
the post-test, the extent of the improvement varied significantly
across questions. Interestingly, students chose a much wider se-
lection of answer choices on the pre-test than the post-test, where
their incorrect responses tended to strongly favor one distractor.
This implies that even for questions that students did not perform
well on, their answer selection was influenced by the material in the
course. In other words, while they may not have always selected
the correct choice, students narrowed their selections, and when
incorrect, they tended to focus on the “most attractive” distractor
choice. Furthermore, the sharp decrease in the rate of E responses

indicates that students felt more confident answering the questions,
even if their selections were incorrect.

3.1 Changes to the Concept Inventory
As we continue to refine the inventory, we have modified the con-

tent several times, mainly to improve student comprehension of the
questions. The most significant change was the addition of ques-
tion 10, on LRU replacement. This question was given to courses
B through D. Additionally, the wording of question 8, on access
control lists (ACLs) versus capabilities, was changed after course
A. This question originally used the analogy of a theater, where
patrons would either be let in by a bouncer checking names on
a list (representing ACLs), or a ticket (representing capabilities),
along with two additional distractor answers. In course A, 44% of
students chose the correct answer of ACLs, but an equal number
chose the distractor answer of tickets. We suspected that the anal-
ogy to the theater was leading them to choose the wrong answer,
so the question was rephrased to use the analogy of a party instead.
Question 7, about polling versus interrupts, was also changed after
course A, in order to better characterize the device. However, this
clarification did not have a discernible effect on students answering
this question correctly.

4. SELECTED RESULTS
In this section, we present a selected subset of our OS concept

assessment results. We discuss individual questions and examine
the questions’ core concepts in the context of student responses.
Due to space constraints, we cannot cover every question in detail.
Instead, we choose to focus on the three of the lowest-performing
questions. We feel that these questions best illustrate common stu-
dent misconceptions and that their analysis provides the most po-
tential to positively affect student learning.

These three questions covered important operating systems top-
ics like indirection (44% answered correctly), I/O (50%), and syn-
chronization (16%). We emphasize these questions because, even
after completing an operating systems course, our results indicate
that students still harbor misconceptions on these topics. For each
question, we present the question along with the cumulative per-
centage of answer choices annotated by a (pre-test %, post-test %)
tuple to indicate how frequently students selected each answer on
the pre- and post-test, respectively, from all four courses. We mark

1 2 3 4 5 6 7 8 9 10
Question

0

20

40

60

80

100
Pr

e-
te

st
 p

er
ce

nt
ag

e Answered E: "Unsure or unfamiliar terminology"
Chose the most common non-E distractor

1 2 3 4 5 6 7 8 9 10
Question

0

20

40

60

80

100

Po
st

-te
st

 p
er

ce
nt

ag
e Answered E: "Unsure or unfamiliar terminology"

Chose the most common non-E distractor

Figure 2: The cumulative percentage of E and popular distractor responses, per question, on the pre-test (left) and post-test (right).

the correct answer with italics. All comparisons with exam and
clicker questions are taken from course A.

4.1 Indirection: File System Block Map
Suppose we have a file system that uses two forms of
pointers to find file data: direct and indirect pointers. We
refer to this set of pointers as a “block map.” Direct pointers
point directly at file data, and indirect pointers point at a
separate disk block that contains multiple pointers to file
data. Every file in the system uses the same block map
structure, with unused pointers directed at null. Eliminating
the indirect pointers while supporting the same maximum
file size would be...

...

...

File Data

File Data

With indirect pointers

File Data

...

File Data

Without indirect pointers

File Data

A) (7%, 7%) Beneficial - The new block map would save
space storing small files.

B) (8%, 7%) Beneficial - The new block map would save
space storing large files.

C) (19%, 44%) Detrimental - The new block map would
waste space storing small files.

D) (15%, 31%) Detrimental - The new block map would
waste space storing large files.

E) (51%, 11%) I am not familiar with this terminology / I
don’t know.

Concept Question 6: File System Block Map Indirection

Indirection is a recurring concept in many areas of computer sci-
ence. Students typically face it first in the form of pointers, where
indirection often proves to be difficult for novice programmers [19].
In the context of operating systems, indirection is often used to
make the metadata associated with storing a variably-sized entity
(like a file or process memory) proportional the entity’s size.

Question 6 examines this concept of indirection, specifically for
storing file metadata (the same concept applies to using multiple
levels of page tables to reduce page table sizes). Our pre-test re-
sults show that this question had the second-highest rate of E an-
swer selections at 51% (the highest was 64% for a segmentation
vs. paging question). We suspect that this concept is intimidating
to students who have not previously encountered the terminology
and constructed a mental model of indirection. In our experience,
students are typically much more comfortable with direct pointers,
likely because their behavior resembles that of an array, which is a
familiar construct.

We presented two in-class peer instruction questions to students
on this topic, and the resulting data confirms that students more eas-
ily reason about direct pointers. The first question introduced the
idea of using only direct pointers to store file metadata. Our data
shows that 78% of the class responded correctly to the individual
response, and 100% responded correctly after discussing the ques-
tion with their group. The second PI question asked students to
compute the amount of metadata that would be needed to store a
particular file when given a block map structure with both direct
and indirect pointers. The correct response rate was 44% individ-
ually and 39% after the group discussion. This was one of a small
minority of questions for the entire course in which the correct re-
sponse rate decreased after group discussion, which indicates that
students were uncomfortable with the concept of indirection.

Adding indirect pointers introduces a challenging concept, since
systems often use indirection as an optimization as opposed to it
being necessary for correctness. We included question 6 on the
assessment due to our observation that students often ask why we
bother with this added complexity. We believe that the challenge
of indirection may stem from the fact that a solution using only
direct pointers seems to be attractive to students because it would
be relatively straightforward.

Final exam results further corroborate this observation with two
questions related to the concept of indirection. The first question
presented a scenario in which we asked students to determine the
numerical properties of a hypothetical page table and then explain
(as free-response text) whether or not they would recommend using
multiple levels of page tables (indirection) in this scenario. The
second question presented a similar hypothetical scenario of a file
system block map and eventually asked students how we justify
the complexity of using indirect pointers. Unsurprisingly, students
performed better on second question, where they were implicitly
told that the complexity was useful, as opposed to the former, in
which students had to make that decision themselves.

Given these types of responses to exam questions and the results
of question 6, indirection is clearly an unintuitive concept. Even
after demonstrating indirection for multiple class topics, many stu-
dents still struggle with indirection misconceptions. We believe
that students who are learning these concepts may benefit from in-
structors initially introducing an abstract form of indirection, per-
haps by relating it to C memory pointers, which students are likely
to find familiar. Discussing indirection abstractly by mapping it to
a more comfortable topic [20] may enable students to construct a
mental model of indirection prior to adding the confounding details
of memory management or file systems.

4.2 I/O: Polling vs. Interrupts
The core concept for Question 7 is the use of polling vs. inter-

rupts to retrieve data from an I/O device. To force students to con-
sider the device’s characteristics without relying on memorization,
we invented a new device with no obviously recognizable “type.”
Ideally, students answering this question would recognize answer
B as polling and D as interrupts. Options A and C were meant as
plausible distractors, despite being impractical for this device.

Your company has developed a new I/O device, and you’ve
been tasked with writing its driver. The device produces a
byte of data at frequent, regular times. The device does not
save data after it has been produced. Which of the following
options for accessing the device would best suit your driver?

A) (0%, 1%) Have the kernel check the device for new data
when it is idle.

B) (23%, 50%) Have the kernel check the device for new
data at set time intervals.

C) (15%, 10%) Have the kernel check the device for data
when applications request it.

D) (24%, 34%) Have the device alert the kernel when it has
new data so that the kernel can collect the data as soon as
it is available.

E) (38%, 5%) I am not familiar with this terminology / I
don’t know.

Concept Question 7: Polling vs. Interrupts

Students taking the post-test predominantly chose between B and
D, indicating that they recognized these two options. In another
assessment question, 90% of students correctly identified the role
of interrupts in transferring execution control to the kernel. We
therefore believe that students are comfortable with these terms and
their definitions.

However, despite recognizing polling and interrupts, applying
them to a scenario remains non-intuitive to students. Having been
given an explanation of polling and interrupts in class, we presented
the students with a peer instruction question in which we asked
whether they would use polling or interrupts for keyboard and disk
devices. Like the indirection concept described in section 4.1, this
was another of the few PI questions whose correct response rate
dropped after group discussion (41% individually to 29% after dis-
cussion), with most students opting to use polling for disk devices.
Such a drop indicates that students found the concept difficult and
that many students lacked confidence in their original answer.

We asked a similar free-response question on the final exam re-
garding the use of polling or interrupts for a disk device. Students
performed better on the exam, with 81% correctly identifying inter-
rupts as the correct choice for disks. However, only 62% correctly

articulated why they made that decision, despite the class having
directly discussed this topic after the PI question. Our conclusion
is that, like the other common misconceptions we identify in this
paper, students most frequently struggle when asked to analyze the
trade-offs of a scenario when described primarily using text (as op-
posed to code).

4.3 Synchronization: Bounded Buffer
Proper use of synchronization and concurrency is a difficult sub-

ject for students to understand [21, 23]. To examine this concept,
question 4 addresses synchronization using a producer–consumer
(bounded buffer) scenario. We chose this scenario because it bene-
fits from applying the less-common approach of using semaphores
purely for synchronization, rather than mutual exclusion.

In our experience teaching operating systems, students com-
monly believe that mutual exclusion is required to solve this prob-
lem correctly. The results here show this to be the case, despite
lecture slides and peer instruction questions indicating the contrary
to students. While not incorrect, enforcing mutual exclusion is in-
efficient and unnecessary for this scenario.

Suppose you have a fixed-size queue shared between two
processes on a system that has one CPU. One process pro-
duces data and puts it into the queue, and the other process
reads data from the queue and removes it. For correctness,
you want to ensure that the producing process only writes
when there is space available, and the consuming process
only reads when there is data available. Your solution needs
to be as efficient as possible. You should:

A) (4%, 2%) Only let one process access the queue at a time.

B) (17%, 15%) Have the producing process signal to the
consuming process when it fills a slot - the consuming
process will only consume as many slots as received sig-
nals.

C) (14%, 16%) Have the producing process signal when it
fills a slot, and the consuming process signal when it
empties a slot.

D) (29%, 65%) Have the producing process signal when it
fills a slot, the consuming process signal when it empties
a slot, and let only one of them access the queue at a time.

E) (36%, 2%) I am not familiar with this terminology / I
don’t know.

Concept Question 4: Bounded Buffer

Initially, students performed well on related peer instruction
questions. When shown unsynchronized bounded buffer code and
asked why synchronization was required, 81% of students cor-
rectly identified (after group discussion) that synchronization is
necessary to prevent overflowing or underflowing the buffer rather
than to provide mutual exclusion. Likewise, when asked to add
semaphores to this unsynchronized example, 81% of students re-
sponded correctly, and no students voted for a mutual exclusion
distractor. This indicates that students are capable of understand-
ing the basics of using semaphores for synchronization, but they
struggle applying this understanding to a less familiar “word prob-
lem” scenario that does not involve code.

We compared this to a midterm question, which had a component
that required a bounded buffer style synchronization solution and a
different component that required a mutex exclusion solution. The
question displayed unsynchronized code for two processes: one

representing a refinement department, refining raw materials into a
product, and another representing a shipping/receiving department,
providing the refinement department with raw materials, and then
shipping the finished product. Students were asked to identify why
the code needed semaphores and to correctly insert them to elimi-
nate any problems they identified. To categorize whether students
use synchronization versus mutual exclusion, we count as synchro-
nization any call to wait(a) followed by signal(b) in one process,
and wait(b) followed by signal(a) in the other process, regardless
of whether the student put the calls in the correct place.

Looking at just the synchronization component of the question,
only one student (5% of the class), attempted to solve the problem
using both synchronization and mutual exclusion, a solution which
would correspond with question 4’s D choice. Forty-five percent of
students used mutual exclusion with no attempt at synchronization,
which would correspond to answer A, and fifty percent of students
made some attempt at synchronization with no additional mutual
exclusion, an answer that corresponds to the correct option, C.

Of the four students who answered C on the post-test in course
A, three of them also used synchronization on the midterm, consis-
tently indicating that they understood using synchronization with-
out mutual exclusion. Of the ten students who answered D, five had
used mutexes, and five had used synchronization (including the stu-
dent who used both). Since very few students chose A in either the
pre- or post-test, this could indicate that students simply didn’t rec-
ognize it as the bounded buffer problem. However, when asked to
describe in words why synchronization was needed, almost all of
them correctly identified a buffering problem, although none used
the phrases “Bounded Buffer” or “Producer–Consumer.”

Eighty-six percent of the students could accurately describe why
synchronization was needed. One student wrote, “One problem
that could occur is that, if T2 tries to unload and there is no prod-
uct produced from T1, there is nothing to tell T2 to wait if there
is nothing available from T1” while describing the problem on the
midterm. Despite his accurate description of the bounded buffer
problem, he both used mutual exclusion on the midterm and an-
swered D to question 4, indicating that while he conceptually un-
derstood the need for synchronization in this scenario, he was un-
able to connect it to the correct solution.

Despite what we might tell them, most in-class and textbook ex-
amples (besides the bounded buffer) do use synchronization to en-
force mutual exclusion, and many operating systems courses often
strongly emphasize identifying critical sections and resolving race
conditions with mutual exclusion. Our results indicate that when
teaching operating systems, instructors should cautiously empha-
size the different uses of synchronization, rather than focusing pri-
marily on mutual exclusion.

5. CONCLUSION
This paper looks at preliminary results of a concept inventory

for operating systems material. We use these results to explore
areas in which students harbor misconceptions regarding indirec-
tion, I/O, and synchronization in an operating systems context. The
misconceptions we identified point to student difficulty in analyz-
ing trade-off scenarios and interpreting the implications of com-
peting solutions. Our concept assessment and preliminary results
provide valuable insights to help operating systems instructors un-
derstand student misconceptions. These results will be expanded
as we continue to collect additional student responses, and we en-
courage other instructors to collaborate in constructing an operating
systems concept inventory.

6. ACKNOWLEDGEMENTS
We are indebted to Beth Simon, Leo Porter, Cynthia Lee, and

Sat Garcia for providing valuable feedback on earlier drafts of our
concept inventory, and to Joe Pasquale for allowing us to adapt his
course materials for peer instruction, and all his other help.

7. REFERENCES
[1] http://git.io/ZRngng.
[2] V. Almstrum, P. Henderson, V. Harvey, C. Heeren, W. Marion,

C. Riedesel, L. Soh, and A. Tew. Concept Inventories in Computer
Science for the Topic Discrete Mathematics. ACM SIGCSE Bulletin,
38(4):132–145, 2006.

[3] J. Andrus and J. Nieh. Teaching Operating Systems Using Android.
In SIGCSE, 2012.

[4] P. Bayman and R. Mayer. A diagnosis of beginning programmers’
misconceptions of basic programming statements. Communications
of the ACM, 26(9), 1983.

[5] T.-Y. Chen, G. Lewandowski, R. McCartney, K. Sanders, and
B. Simon. Commonsense Computing: using student sorting abilities
to improve instruction. In SIGCSE, 2007.

[6] W. Christopher, S. Procter, and T. Anderson. The Nachos
Instructional Operating System. In USENIX Winter, 1993.

[7] C. H. Crouch and E. Mazur. Peer Instruction: Ten Years of
Experience and Results. American Journal of Physics, 69(9),
September 2001.

[8] H. Danielsiek, W. Paul, and J. Vahrenhold. Detecting and
Understanding Students’ Misconceptions Related to Algorithms and
Data Structures. In SIGCSE, 2012.

[9] D. Evans, G. Gray, S. Krause, J. Martin, C. Midkiff, B. Notaros,
M. Pavelich, et al. Progress on Concept Inventory Assessment Tools.
In IEEE Frontiers in Education, 2003.

[10] K. Goldman, P. Gross, C. Heeren, G. Herman, L. Kaczmarczyk,
M. C. Loui, and C. Zilles. Identifying Important and Difficult
Concepts in Introductory Computing Courses using a Delphi
Process. In SIGCSE, 2008.

[11] R. Hake. Interactive-engagement versus traditional methods: A
six-thousand-student survey of mechanics test data for introductory
physics courses. American Journal of Physics, 66:64, 1998.

[12] G. Herman and J. Handzik. A preliminary pedagogical comparison
study using the digital logic concept inventory. In IEEE Frontiers in
Education, 2010.

[13] G. Herman, M. Loui, and C. Zilles. Creating the Digital Logic
Concept Inventory. In SIGCSE, 2010.

[14] R. Hess and P. Paulson. Linux Kernel Projects for an Undergraduate
Operating Systems Course. In SIGCSE, 2010.

[15] D. Hestenes, M. Wells, and G. Swackhamer. Force Concept
Inventory. The Physics Teacher, 30:144–158, March 1992.

[16] M. Holliday. Teaching computer systems through common
principles. In IEEE Frontiers in Education, 2011.

[17] L. C. Kaczmarczyk, E. R. Petrick, J. P. East, and G. L. Herman.
Identifying Student Misconceptions of Programming. In SIGCSE,
2010.

[18] L. Ma, J. Ferguson, M. Roper, and M. Wood. Investigating the
Viability of Mental Models Held by Novice Programmers. ACM
SIGCSE Bulletin, 39(1):499–503, 2007.

[19] I. Milne and G. Rowe. Difficulties in Learning and Teaching
Programming - Views of Students and Tutors. Education and
Information Technologies, 7(1), 2002.

[20] J. D. Novak. Concept Mapping: A Useful Tool for Science
Education. Journal of Research in Science Teaching, 27(10), 1990.

[21] J. Ousterhout. Why Threads Are A Bad Idea (for most purposes). In
Invited presentation at USENIX ATC, 1996.

[22] R. Pea. Language-Independent Conceptual "Bugs" in Novice
Programming. Journal of Educational Computing Research,
2(1):25–36, 1986.

[23] H. Sutter and J. Larus. Software and the Concurrency Revolution.
ACM Queue, 3(7):54–62, Sept. 2005.

