
A Highly-Extensible Architecture for Networked I/O

Cynthia Taylor Joseph Pasquale
Oberlin College UC San Diego

ICNC
January 30th 2013

Motivation

Why Remote I/O?

Transparency

Transformation

No Single Solution

• Different devices

• Different applications

• Different network conditions

• Different optimal solutions

Architecture

Networked Device Driver Abstraction for
Transparency

Diverse Beneficiaries Require Easy Customization
and Extensibility

• Device designers

• Application designers

• Users

Modular Architecture

Need to Connect Device and Application

Device Module

Network Modules

Application Module

Need to Add Data Processing for Network

• Averaging

• Bundling

• Buffering

• Compressing

• Discarding

• Encrypting

• Multiplexing

• Synchronizing

Transformation Module Pairs

Example Module Pairs

• Compression/Decompression

• Bundling/Unbundling

• Encryption/Decryption

Compression

Composability

Summary

• Device driver abstraction supports transparency

• Transformation module pairs allow processing of data

• Modular design supports customization, extension

Implementation

Implementation Goals

• Efficiency

• Ease of implementation

•  Leveraging existing mechanisms

Kernel vs user space

•  Insecure/buggy code is dangerous to run in kernel

• Allows developers to use any existing tools/libraries

• Copies between process boundaries must go through kernel

Run Predominately in Userspace to Support
Extensibility

Modules as Processes Support Customization

• Can compose at run-time

• Scheduled by the kernel

• Automatically block on I/O

• Separate address spaces

Pipes Copy Between Processes

Implementation Summary

•  Implemented at user-level whenever possible to support extensibility

• Modules are implemented as processes to support customization

• Pipes implementation for ease of implementation

Performance

Test bed

•  Dell Optiplex 320

•  Intel Celeron

•  133 Mhz FSB Clock

•  Ping time of .12 ms between machines

•  11.3 MB/s throughput

Computing the Base End-to-End Time

Base End-to-End Time Results

Space Navigator

End-to-End Time of the Space Navigator

Overhead of Space Navigator Driver

Buffering Experiment

Buffering Performance

End-to-End Time Experiment

End-to-End Time with Transformation Modules

Summary

• Overhead is order of magnitude less than speed of network

• Adding additional transformation modules adds relatively little overhead,
especially at small message sizes.

Conclusion

Summary

• System for I/O over network

• Application sees as driver

• Supports Transformation Modules

• Easily customized and extended to new devices and functionality

