
A Highly-Extensible Architecture for Networked I/O


Cynthia Taylor 
 
 
 
 
 
 
 
Joseph Pasquale

Oberlin College 
 
 
 
 
 
 
 
UC San Diego


ICNC

January 30th 2013




Motivation




Why Remote I/O?




Transparency




Transformation




No Single Solution


• Different devices


• Different applications


• Different network conditions


• Different optimal solutions




Architecture




Networked Device Driver Abstraction for 
Transparency




Diverse Beneficiaries Require Easy Customization 
and Extensibility


• Device designers


• Application designers 


• Users 




Modular Architecture 




Need to Connect Device and Application




Device Module




Network Modules




Application Module




Need to Add Data Processing for Network


• Averaging


• Bundling


• Buffering


• Compressing


• Discarding


• Encrypting


• Multiplexing


• Synchronizing




Transformation Module Pairs




Example Module Pairs


• Compression/Decompression


• Bundling/Unbundling


• Encryption/Decryption




Compression




Composability




Summary


• Device driver abstraction supports transparency


• Transformation module pairs allow processing of data


• Modular design supports customization, extension




Implementation




Implementation Goals


• Efficiency 


• Ease of implementation


•  Leveraging existing mechanisms




Kernel vs user space


•  Insecure/buggy code is dangerous to run in kernel


• Allows developers to use any existing tools/libraries


• Copies between process boundaries must go through kernel




Run Predominately in Userspace to Support 
Extensibility




Modules as Processes Support Customization


• Can compose at run-time


• Scheduled by the kernel


• Automatically block on I/O


• Separate address spaces




Pipes Copy Between Processes




Implementation Summary


•  Implemented at user-level whenever possible to support extensibility


• Modules are implemented as processes to support customization


• Pipes implementation for ease of implementation




Performance




Test bed


•  Dell Optiplex 320


•  Intel Celeron


•  133 Mhz FSB Clock


•  Ping time of .12 ms between machines


•  11.3 MB/s throughput




Computing the Base End-to-End Time




Base End-to-End Time Results




Space Navigator




End-to-End Time of the Space Navigator




Overhead of Space Navigator Driver




Buffering Experiment




Buffering Performance




End-to-End Time Experiment




End-to-End Time with Transformation Modules




Summary


• Overhead is order of magnitude less than speed of network


• Adding additional transformation modules adds relatively little overhead, 
especially at small message sizes.




Conclusion




Summary


• System for I/O over network


• Application sees as driver


• Supports Transformation Modules


• Easily customized and extended to new devices and functionality



